Mark scheme - Forces in Action Density

		Answer/Indicative content	Mark s	Guidance
1		C	1	
		Total	1	
2		B	1	Examiner's Comments This question proved particularly straightforward and accessible to nearly all candidates.
		Total	1	
3		$(V=) \frac{0.1}{5300}$$1.89 \times 10^{-5}\left(\mathrm{~m}^{3}\right)$	M1 A0	Note the mark is for substitution of values
				Examiner's Comments This mark was scored by most candidates. A power of ten error was usually the cause of losing this mark.
		Total	1	
4		C	1	
		Total	1	
5		A	1	
		Total	1	
6		C	1	
		Total	1	
7		D	1	
		Total	1	
8		A	1	
		Total	1	
9		D	1	
		Total	1	
10		A	1	
		Total	1	
1		D	1	
		Total	1	

3.2 Forces in Action - Density

1 2		D	1	
		Total	1	
1 3		$p=\rho g h=1.3 \times 9.81 \times h=1.0 \times 10^{5}$ $\mathrm{h}=7.8 \mathrm{~km}$	B1 B1	
		Total	2	
$\begin{aligned} & 1 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { volume }=\pi \times 0.035^{2} \times 0.085= \\ & 0.000327 \\ & m=\rho V=1000 \times 0.000327 \\ & \text { mass }=0.33(\mathrm{~kg}) \end{aligned}$	C1 C1 A0	
		Total	2	
$\begin{aligned} & 1 \\ & 5 \end{aligned}$		Doubling the depth is too much / d is not (directly) proportional to h Qualifying statement using evidence from graph e.g. decreasing gradient, use of numbers to show not proportional, comment about non-zero intercept etc	B1	Examiner's Comments Candidates generally had the right idea on this item yet lacked clear enough language to express themselves adequately. Many had some success by referring specifically to data from the graph or the shape of the trendline to support their assertions. Less convincing attempts included those that suggested that there was square root relationship presumably with Newton's equations of motion in mind, without any justification for doing so from the graph. Centres are reminded that situations with changing accelerations are not expected to be solved algebraically at A2 level.
		Total	2	
$\begin{aligned} & 1 \\ & 6 \end{aligned}$	a	Use a thermometer (with $\pm 1^{\circ} \mathrm{C}$) Stir water bath / avoid parallax (for glass thermometer)	B1	Allow 'temperature sensor / gauge' Allow 'avoid touching sides of water bath with thermometer' Allow 'take temperature in several places / times and average' Allow idea of 'leave thermometer for long time (to reach thermal equilibrium)' Not idea of 'use thermometer with finer resolution' Examiner's Comments A large majority included a correct measuring device, such as a thermometer. Significantly fewer described a technique for accurate measurements such as stirring the water or taking the temperature at several points and calculating a mean temperature.
	b	Smaller (spacing between) divisions / increments (AW)	B1	Ignore any reference to accuracy or precision Allow 'less uncertainty' Allow better or smaller or greater or higher resolution Examiner's Comments Approximately half of the candidature made a correct comment

				regarding resolution or that the smaller intervals on the psi scale made it a sensible choice of scale.
	ii	$\begin{aligned} & p=37.0 \times 4.448 /\left(1000 \times 0.0254^{2}\right) \\ & 255(\mathrm{kPa}) \\ & \text { uncertainty }=3(\mathrm{kPa}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow clearly identified correct answer in table or in working area. Must be 3sf Must be 1sf Allow 255.1 ± 3.4 scores mark 1 Examiner's Comments The vast majority of candidates correctly calculated the pressure in kPa and stated that the absolute uncertainty was 3 kPa . A very small number of responses were rounded inappropriately.
c	i	Point plotted at $(44,255)$	B1	ECF from (b)(ii) Plot to with \pm half a small square Ignore checking error bars Examiner's Comments Most candidates correctly plotted the point with error bars. In this instance during marking Examiners were instructed to ignore the error bars as they were too difficult to view when scanned.
	ii	Level 3 (5-6 marks) Clear explanation, description and determination There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some explanation, description and determination Or Some explanation and clear determination There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1-2 marks) Limited explanation or description or determination The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks	$\begin{gathered} B 1 \times \\ 6 \end{gathered}$	Indicative scientific points may include: Explanation and Description - Absolute zero is the minimum possible temperature / at absolute zero KE is zero - At absolute zero p is zero - At absolute zero, the internal energy is minimum (allow 0) - Absolute zero should be (about) -273° ㅇ - Reference to $p \mathrm{~V}=n R T$ or $p V=N k T$ or $p \propto T$ - A graph of p against θ is a straight line / straight line drawn on graph - Intercept of straight line with x-axis or θ-axis is absolute zero calculated by using $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ Determination - Gradient in the range 0.7 to 0.9 ($\mathrm{kPa} \mathrm{K}^{-1}$) - $y=m x+c$ used to determine the intercept c or absolute zero

		No response or no response worthy of credit.	
e Absolute zero in the range -320 ${ }^{\circ} \mathrm{C}$ to $-240{ }^{\circ} \mathrm{C}$			
e			

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & & & \\
& & \begin{array}{l}\text { namely that the points would all be shifted to the left, causing a } \\
\text { lower x-intercept or a less steep line of best fit. } \\
\text { There were three acceptable experimental approaches to avoid } \\
\text { this systematic error. Stirring the water and waiting until the gas } \\
\text { and water equilibrated would have reduced the effects of the rapid } \\
\text { cooling. A sensible approach employed by some candidates was } \\
\text { to take the temperature of the gas directly using a thermometer or } \\
\text { temperature inside the flask. }\end{array} \\
\hline \text { Total } & 18 & & \begin{array}{l}\text { Allow use of } 10 \text { for } g \text { (since estimate) }\end{array}
$$

\hline Allow ECF for incorrect weight\end{array}\right]\)| Ignore POT |
| :--- |
| Allow one significant figure |

				Candidates should be encouraged to practise making estimates of physical quantities.
		Total	3	
	a	$\begin{aligned} & p V=\text { constant }\left(\text { or } p_{1} V_{1}=p_{2} V_{2}\right) \\ & p_{\text {final }}=2.4 \times 10^{5} \times 1.2 / 1.5 \\ & =1.9(2) \times 10^{5}(\mathrm{~Pa}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	Alternative method: $p=n \mathrm{RT} / \mathrm{V}$ (p must be the subject) Allow use of $p=N \mathrm{kT} T /$ (with $N=7.2 \times 10^{22}$ and $\mathrm{k}=1.38 \times 10^{-23}$) Substitute $p=0.12 \times 8.31 \times 290 / 1.5 \times 10^{-3}$ ECF from 1a for incorrect n and/or T $p=1.9(3) \times 10^{5}(\mathrm{~Pa})$ Examiner's Comments Questions 1 (a) and 1 (b) took the ideal gas equation and applied it to an unfamiliar situation, that of a toy rocket. Most candidates answered these questions well, remembering to convert the temperature from $17^{\circ} \mathrm{C}$ to 290 K .
	b i	$\begin{aligned} & \Delta p=(2.4-1.0)-10^{5}=1.4 \times 10^{5}(\mathrm{~Pa}) \\ & \text { upwards force }(=\Delta p A)=(2.4-1.0) \times \\ & 10^{5} \times 1.1 \times 10^{-4}=15(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Alternative method: Downwards force (from trapped air) $=p \mathrm{~A}=$ $2.4 \times 10^{5} \times 1.1 \times 10^{-4}=26.4(\mathrm{~N})$ and upwards force (from atmosphere) $=p \mathrm{~A}=1.0 \times 10^{5} \times 1.1 \times 10^{-4}=$ 11.0 (N) So total upwards force $=26.4$ - 11.0 $=15.4(\mathrm{~N})$ Ignore any attempt to calculate weight Special case: Allow $1 / 2$ for the use of $\Delta p=2.4 \times 10^{5}(\mathrm{~Pa})$ giving upwards force $=26.4(\mathrm{~N})$ Examiner's Comments Most candidates realised that a difference in air pressure between the inside and outside of the bottle would force the water downwards, producing an upwards force on the bottle which could be calculated using $p=F / A$.
		$\begin{aligned} & m=0.3+0.05(=0.35)(\mathrm{kg}) \\ & (\text { Resultant force }=\text { upwards force }-W= \\ & m a) \\ & 15.4-(0.35 \times 9.81)=0.35 a \text { or } a= \\ & 12 / 0.35 \\ & a=34\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	$0.050+\left(10^{3} \times 0.3 \times 10^{-3}\right)$ Alternative approach: $a=(15.4 / m)-\mathrm{g}$ ECF for incorrect value of m No ECF ci (since we are told that upwards force $=15(.4)(\mathrm{N})$) Upwards force $=15(\mathrm{~N})$ gives $\mathrm{a}=33\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ Examiner's Comments This question, although a simple $\mathrm{F}=$ ma problem, challenged many candidates. Exemplar 1

3.2 Forces in Action - Density

				- Confusing mass and weight in the description of upthrust - Confusing the tension in the string with upthrust Misconception Exemplar 8 There is a constant يnorease in porce prom 0 -boseon This is becallse as the wrater meves nise, the wethrust on the sealed hollow tuse uncreasel. Af thir point the weight of the tube t the fora in the sthing. is greater than the upothnist. Affer 60 seconds, the hollow tabe is in equetiorium as the upthust is eaual to the force on the sling t weighi This exemplar illustrates how correct use of technical language can score full marks. Here the marks were credited for - Identifying a minimum of two forces acting on the tube (weight and upthrust) ii - Mentioning that upthrust increases as the water level rises ii - Explanation that upthrust is equal to the force on the string (tension) and weight ii (The last mark was the toughest mark to gain, so this candidate has shown good understanding of this difficult topic.)
		Total	3	
2	a	$\begin{aligned} & \pi \times \frac{\left(2.9 \times 10^{-2}\right)^{2}}{4} \text { or } \pi \times\left(1.45 \times 10^{-2}\right)^{2} \\ & 6.605 \times 10^{-4} \mathrm{~m}^{2} \approx 6.6 \times 10^{-4} \end{aligned}$	M1 A0	
		$\text { ii } \begin{aligned} & V=6.6 \times 10^{-4} \times 12.0 \text { or } 7.92 \times 10^{-5}\left(\mathrm{~m}^{3}\right) \\ & m=400 \times 7.92 \times 10^{-5} \text { or } 0.03168 \mathrm{~kg} \\ & W=0.31(\mathrm{~N}) \end{aligned}$	C1 C1 A1	Ignore POT
	b	$\begin{aligned} & V=\frac{0.31}{1000 \times 9.81} \text { or } 3.16 \times 10^{-5} \\ & y=\frac{3.16 \times 10^{-5}}{6.6 \times 10^{-4}} \\ & y=0.048(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Mass of water displaced $=\frac{0.31}{9.81}=0.316$ $y=\frac{0.316}{1000 \times 6.6 \times 10^{-4}}$
	c	$y=0.053 \mathrm{~m}$ Same weight / mass displaced of oil	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	

		Smaller density implies larger volume of oil displaced y is larger OR y a $1 / \mathrm{p}$	B1 B1	
		Total	11	
2 5	i	The upthrust (on an object in a fluid) is equal to the weight of fluid (it displaces)	B1	Note 'fluid' or 'liquid' must be mentioned at least once. Allow a named fluid, e.g. water
	ii	$\begin{aligned} & (p=h \rho g) \\ & 1.9 \times 10^{3}=0.15 \times \rho \times 9.81 \\ & \rho=1.3 \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 A1	
		Total	3	
2	a	(Vernier) Calliper or micrometer (screw gauge)	B1	Not rule(r) Examiner's Comments This question was well answered with most candidates stating either Vernier calliper or a micrometer screw gauge.
	ii	$\begin{aligned} & 2.52 \\ & \pm 0.08 \end{aligned}$	B1 B1	Allow (2.52-2.43 $=0.09$ or (2.59-2.52 $=0.07$ Examiner's Comments Most candidates correctly calculated the mean diameter of the ball. A much smaller proportion of the candidates determined the absolute uncertainty in the diameter correctly. In this case, the range was 0.16 cm , so the absolute uncertainty was 0.08 cm . Examiners allowed the maximum value minus average value or average value minus minimum value. AfL When measurements are repeated the absolute uncertainty is given by: Absolute uncertainty $=1 / 2 \times$ range $=1 / 2 \times$ (maximum value minimum value)
	iii	$\begin{align*} & \text { Volume } \frac{4}{3} \times \pi \times\left(1.26 \times 10^{-2}\right)^{3} \tag{or}\\ & =8.379 \times 10^{-6} \\ & 8.4 \times 10^{-6} \mathrm{~m}^{2} \end{align*}$	M1 A0	$\begin{aligned} & \frac{1}{6} \times \pi \times\left(2.52 \times 10^{-2}\right)^{3} \\ & \frac{4}{3} \times \pi \times\left(\frac{2.52 \times 10^{-2}}{2}\right)^{3} \end{aligned}$ Examiner's Comments

				This was another "show" question. Many candidates find dealing with standard form terms in their calculator difficult. Candidates needed to show clearly the conversion of the diameter in cm to radius in m . There was some evidence of candidate just adding a 10^{-6} power to their answer.
		$\begin{aligned} & \frac{0.023}{8.4 \times 10^{-6}} \quad \text { or } 2738 \\ & 2700\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \text { or } 2.7 \times 103\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 A1	Note 2745 if using calculator value from (iii) Note must be two significant figures Allow one mark for $2.7 \times 106\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ Examiner's Comments In this question, most candidates were able to determine the density correctly although, a few candidates did not change the mass in gram to kilogram. A large number of candidates did not give their answer to an appropriate number of significant figures; the common answer being $2738 \mathrm{~kg} \mathrm{~m}^{-3}$. In this case, the mass was given to two significant figures and the volume was calculated from data give to three significant figures, thus the final answer should be given to the same number of significant figures as the least significant data, i.e. to two significant figures.
	v	$\begin{aligned} & \frac{1}{23} \text { or } \frac{0.08}{2.52} \text { or } \frac{0.24}{2.52} \frac{\text { or } 4.3 \% \text { or } 3.2 \% \text { or }}{9.5 \%} \\ & 14 \%(13.8 \%) \end{aligned}$	C1 A1	Allow ECF from (ii) - 3.6\% or 10.7% for $\Delta d=0.09$ Allow maximum/minimum methods Note 13% for $\Delta d=0.07$ or 15% for $\Delta d=0.09$ [ECF 5.5% for $\Delta d=0.01]$ Examiner's Comments The majority of candidates were able to determine the percentage uncertainty in the mass correctly. Fewer candidates realised that the percentage uncertainty in the volume was three times the percentage uncertainty in the diameter. Candidates who did well, clearly showed their working. Some candidates tried to use a maximum/minimum method. This was a more complex method and more difficult for candidates to gain the correct answer. In this case, the maximum mass needed to be divided by the minimum volume or the minimum mass needed to be divided by the maximum volume AfL How to use percentage uncertainties. Exemplar 5

				The candidate's answer is logically structured showing the percentage uncertainty in the mass and volume and then adding them together so gaining both marks. An answer of 14% would have been acceptable.
	b	$\begin{aligned} & \text { Extension }=0.096-0.078 \text { or } 0.018 \mathrm{~m} \\ & \text { Weight }=0.023 \times 9.81 \text { or } 0.22563 \\ & 13\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 C1 A1	Allow ECF for incorrect mass conversion from (iv) Allow $12.6\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ or $12.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ Examiner's Comments The majority of the candidates clearly showed their working and calculated the force constant correctly. Some incorrectly used the energy stored equation.
	c i	Apparent weight $=0.01 \times 13(=0.13 \mathrm{~N})$ $(\text { Upthrust }=0.226-0.13)=0.10(\mathrm{~N})$	C1 A1	Allow ECF from (b) Allow 0.008×12.5 Allow 0.1 (N) (1sf) Examiner's Comments In this question, many candidates calculated the apparent weight and then incorrectly assumed that this was the upthrust. Other errors included using the incorrect values for length to determine the extension. Some candidates correctly determined the upthrust by determining the change in extension.
	ii	$\begin{aligned} & \rho=\frac{0.10}{9.81 \times 8.4 \times 10^{-6}} \\ & 1200\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 A1	Allow ECF from (i) Examiner's Comments Candidates generally found this last question challenging. Some candidates who did less well, attempted to use the equation for liquid pressure. Candidates who did well again clearly showed their reasoning.
		Total	15	
	i	$\begin{aligned} & \text { volume }=7.0 \times 10^{-2} \times \pi \times\left(0.5 \times 10^{-2}\right)^{2} \\ & \text { or } 5.5 \times 10^{-6}\left(\mathrm{~m}^{3}\right) \\ & p=5.0 \times 10^{-3} /\left(7.0 \times 10^{-2} \times \pi \times(0.5\right. \\ & \left.\left.\times 10^{-2}\right)^{2}\right) \\ & \text { density }=910\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 A1	No ecf for incorrect volume. Answer to 3 s.f. is 909 Allow 1 mark for $230\left(r=1.0 \times 10^{-2} \mathrm{~m}\right.$ used) Examiner's Comments Examiners were delighted to see that nearly all candidates could successfully calculate the density of the wood block, although some candidates missed that the diameter rather than the radius

		Weight (of cylinder) determined using a newtonmeter or Measure mass (of cylinder) using balance / scale(s) and multiplying by $\mathrm{g} /$	B1	Not 'gravity' for g
		Area determined by measuring the diameter with a ruler / vernier callipers / micrometer and then using (area $=$) $\pi \times$	B1	Not measure radius Allow other correct methods
		A sensible suggestion that reduces the \% uncertainty: Use micrometer / (vernier) calipers / travelling microscope Use balance / newtonmeter with smaller division (AW)	B1	Not 'repeat readings (of diameter etc.)' because this procedure improves the accuracy and not the precision Allow balance / newtonmeter with 'high resolution' Examiner's Comments The majority of the candidates scored two or more marks for this practical based question. It is good to report that many candidates were familiar with instruments used to measure diameter and mass. Vernier calipers and micrometers were mentioned by some candidates for measuring the diameter of the metal cylinder. Instead of using the equation pressure = force / area, a small number of candidates successfully gained some marks by applying the equation $p=h \rho g$. A small number of candidates confused the terms weight and mass. Only a very small number of candidates realised that precision was linked to reducing the percentage uncertainty in the final value of the pressure. Answers such as 'Use a micrometer measuring to $\pm 0.01 \mathrm{~mm}$ instead of a ruler marked in mm' or 'Use a digital balance giving mass to the nearest 0.01 g instead of 1 g ' were awarded the final mark. Most candidates however, confused accuracy with precision and went on to describe how the experiment could be made precise by taking multiple readings of diameter or mass. A significant number of candidates omitted answering the precision part of the question. It is worth reminding candidates that it is important to carefully examine the question before writing their answers.
		Total	8	
$\begin{aligned} & 2 \\ & 9 \end{aligned}$	i	$\begin{aligned} & \rho=m / V=m / A v ; \text { so } m=A \rho v \\ & 7.5 \times 10^{-5} \times 1000 \times v=0.070 \\ & \text { giving } v=0.93\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1 A0	
	ii	3.7 ($\mathrm{m} \mathrm{s}^{-1}$)	A1	Accept 3.72
	iii	$\begin{aligned} & F=\Delta(m v) / \Delta t=0.070 \times(3.72-0.93) \\ & F=0.195(\mathrm{~N}) \end{aligned}$	C1	ecf (ii)
			A1	accept 0.19 or 0.2(0)
	$\begin{aligned} & i \\ & v \end{aligned}$	arrow into the shower head perpendicular to its face.	B1	award mark for a reasonable attempt.
		Total	6	

	a i	Micrometer/(Vernier) caliper Repeat readings (in different directions) and average	B1 B1	Not ruler Examiner's Comments Most candidates were able to suggest the use of a micrometer or caliper. A significant number of candidates did not state that they would repeat readings in different directions and calculate the mean value.
	ii	$\begin{aligned} & \frac{4}{3} \pi(0.014)^{3} \text { OR } 1.15 \times 10^{-5} \\ & m=650 \times 1.15 \times 10^{-5}=7.47 \times 10^{-3} \\ & 0.0075(\mathrm{~kg}) \end{aligned}$	M1 M1 A0	Allow ${ }^{\frac{4}{3} \pi(1.4)^{3}}$ Note must see correct POT Examiner's Comments Candidates were able to use the formula for a volume of a sphere and rearrange the equation for density. Some candidates were confused with the power of tens. Again, clear working was needed for the award of both marks.
	iii	$\begin{aligned} & 1000 \times 1.15 \times 10^{-5} \times 9.81=0.11 \mathrm{~N} \mathrm{OR} \\ & 0.0075 \times 9.81=0.074 \mathrm{~N} \\ & F=0.11-0.074=0.037(\mathrm{~N}) \end{aligned}$ OR $\begin{array}{\|l} 9.81(1000-650) \text { or } \\ 1.15 \times 10^{-5} \times(1000-650) \end{array}$ $\begin{aligned} & F=1.15 \times 10^{-5} \times 9.81(1000-650) \\ & =0.039(\mathrm{~N}) \end{aligned}$	C1 A1 C1 A1	Allow use of $7.47 \times 10^{-3} \mathrm{~kg}$ from a ii Allow ecf from a ii Examiner's Comments Candidates found this question difficult. Many candidates gained one mark either for determining the weight of the sphere or for determining the upthrust correctly. Few candidates realised they needed to find the difference between the upthrust and the weight of the sphere.
	b	Level 3 (5-6 marks) Clear procedure, measurements and analysis There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Some procedure, some measurements and some analysis. There is a line of reasoning presented with some structure. The information	B1 x6	Indicative scientific points may include: Procedure - labelled diagram - long tube - method to determine terminal velocity - check for terminal velocity - safety precaution (tray to avoid spills / gloves / clamp tube) - method to remove sphere Measurements

	presented is in the most-part relevant and supported by some evidence. Level 1 (1-2 marks) Limited procedure and limited measurements or limited analysis The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- measurement of diameter - use micrometer / calliper to measure diameter - averages diameter - measurements to determine v, e.g. stopwatch, ruler, light gate connected to timer, detailed use of video camera - repeats experiment for same r Analysis - $r=d / 2$ - determination of terminal velocity - plot a graph of v against r^{2} - $\mathrm{K}=$ gradient. Examiner's Comments This question was the first level of response question on the paper. It involved candidates planning an investigation into the variation of terminal velocity and the radius of a sphere. Candidates were expected to draw a labelled diagram and there were many tubes with elastic bands drawn. To gain the highest marks candidates were expected to explain carefully how they would measure the terminal velocity and to include how they would check that the terminal velocity had been achieved. Candidates were also expected to explain how their results could be used to give to determine the constant K. Good candidates suggested an appropriate graph that should be plotted and explained how K could be determined from the gradient. In general answers were better this year than last year.
	Total	12	
1	weight $/ W / m g$ and downward arrow	B1 B1 B1	Allow labels used in (c)(i) throughout Ignore arrow sizes. Allow '(water) resistance' for drag Examiner's Comments The forces referred to by name in module 3 of the specification are weight, drag, upthrust. tension, normal contact force and friction. Candidates should be aware that the three relevant forces in this example are upthrust, weight and drag (with friction as an acceptable alternative). A wide range of other options were provided by candidates, such as gravity, buoyancy, lift, pressure, impulse and air resistance, none of which were acceptable.
	Resultant force decreases (with time or as cylinder descends) Upthrust remains constant / drag decreases (as speed decreases) / resultant force is upwards / At lowest	B1 B1	Allow 'At lowest point, upthrust > weight' Note: Any incorrect answer from the list will not score this point

